Data Wrangling with dplyr and tidyr

In section you will learn you to wrangle data with two popular R-packages tidyr and dplyr and both are come with tidyverse, an collection of several R packages designed for data science.

tidyr - Package

tidyr helps to create tidy data that enables you to work with tidy data formats which are easy to manipulate, model and visualize, and have a specific structure. It follows a set of rules for organizing variables, values, and observations into tables, with each column representing a variable and each row representing an observation. Tidy data makes it easier to perform data analysis and visualization and is the preferred format for many data analysis tools and techniques.

tidyr functions fall into five main categories:

  • Pivotting which converts between long(pivot_longer()) and wide forms (pivot_wider()), replacing

  • Rectangling, which turns deeply nested lists (as from JSON) into tidy tibbles.

  • Nesting converts grouped data to a form where each group becomes a single row containing a nested data frame

  • Splitting and combining character columns. Use separate() and extract() to pull a single character column into multiple columns;

  • Make implicit missing values explicit with complete(); make explicit missing values implicit with drop_na(); replace missing values with next/previous value with fill(), or a known value with replace_na().

dplyr - Package

dplyr is part of a larger [tidyverse]( https://www.tidyverse.org/. It provides a grammar for data manipulation and a set of functions to clean, process, and aggregate data efficiently. Some of the key features of dplyr include:

A tibble data structure, which is similar to a data frame but is designed to be more efficient and easier to work with. A set of verbs for data manipulation, including filter() for subsetting rows, arrange() for sorting rows, select() for selecting columns, mutate() for adding new columns, and summarize() for aggregating data. A chainable syntax with pipe (%>%) that makes it easy to perform multiple operations in a single line of code.Support for working with remote data sources, including databases and big data systems. Overall, dplyr is a popular and widely used package for data manipulation in R and is known for its simplicity and ease of use.

In addition to data frames/tibbles, dplyr makes working with following packages:

dtplyr: for large, in-memory datasets. Translates your dplyr code to high performance data.table code.

dbplyr: for data stored in a relational database. Translates your dplyr code to SQL.

sparklyr: for very large datasets stored in Apache Spark.

Cheat-sheet

Here below data Wrangling with dplyr and tidyr Cheat Sheets:

Figure 1: Data Wragling with dplyrand tidyr Cheat sheet-2

Data Wragling with dplyrand tidyr Cheat sheet-1{fig-dplyr_tidyr_02}

In addition to tidyr, and dplyr, there are five packages (including stringr and forcats) which are designed to work with specific types of data:

  • lubridate for dates and date-times.

  • hms for time-of-day values.

  • blob for storing blob (binary) data

Install tidyverse

You can install the tidyverse with a following line of code:

install.packages(“tidyverse”)

Load Package

Code
library(tidyverse)

Data

In this exercise we will use following CSV files:

  1. usa_division.csv: USA division names with IDs

  2. usa_state.csv: USA State names with ID and division ID.

  3. usa_corn_production.csv USA grain crop production by state from 2012-2022

  4. gp_soil_data.csv: Soil carbon with co-variate from four states in the Greatplain region in the USA

  5. usa_geochemical_raw.csv: Soil geochemical data for the USA, but cleaned

We will use read_csv() function of readr package to import data as a Tidy data.

Code
# Create a data folder
dataFolder<-"E:/Dropbox/GitHub/Data/USA/"
# Load data
div<-read_csv(paste0(dataFolder, "usa_division.csv"))
state<-read_csv(paste0(dataFolder, "usa_state.csv"))
corn<-read_csv(paste0(dataFolder, "usa_corn_production.csv"))
soil<-read_csv(paste0(dataFolder, "gp_soil_data.csv"))

Pipe Operator

Before starting this tutorial, I like to brief you about the Pipe Operator. This is the most important operator for data wrangling in R. The pipe operator, written as %>%, has been a longstanding feature of the magrittr package for R. It takes the output of one function and passes it into another function as an argument. This allows us to link a sequence of analysis steps. In this tutorial, you can see exactly how this works in a real example. (Source:https://towardsdatascience.com/an-introduction-to-the-pipe-in-r-823090760d64)

Some Important Functions

Join

In R we use base::merge() function to merge two dataframes. This function is present inside join() function of dplyr package. The most important condition for joining two dataframes is that the column type should be the same of “key” variable by the merging happens. Types of base::merge() and several join() function of dplyr available in R are:

Join function of dplyr{fig-dplyr_join}

inner_join() is a function in the dplyr library that performs an inner join on two data frames. An inner join returns only the rows that have matching values in both data frames. If there is no match in one of the data frames for a row in the other data frame, the result will not contain that row.

inner_join(x, y, …..)

We will join state, division and USA corn production data one by one e using inner_join()* function;

Code
corn_state = dplyr::inner_join(corn, state) 
Code
corn_state_div = dplyr::inner_join(corn_state, div)  

We can run multiple inner_join() functions in a series with pipe %>% function:

Code
mf.usa = dplyr::inner_join(corn, state) %>% 
     dplyr::inner_join(div) %>%
  glimpse()
Rows: 465
Columns: 6
$ STATE_ID      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4,…
$ YEAR          <dbl> 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 20…
$ MT            <dbl> 734352.8, 1101529.2, 1151061.8, 914829.3, 960170.7, 9968…
$ STATE_NAME    <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "…
$ DIVISION_ID   <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4,…
$ DIVISION_NAME <chr> "East South Central", "East South Central", "East South …

Relocate

Now we will will organize DIVISION_FIPS, DIVISION_NAME, STATE_FIPS, STATE_NAME, DIVISION_NAME, YEAR, MT will use relocate() function:

relocate(.data, …, .before = NULL, .after = NULL)

Code
mf.usa<-dplyr::relocate(mf.usa, DIVISION_ID, DIVISION_NAME, STATE_ID,   STATE_NAME, YEAR, MT,  
                    .after =  DIVISION_ID) 
head(mf.usa)
# A tibble: 6 × 6
  DIVISION_ID DIVISION_NAME      STATE_ID STATE_NAME  YEAR       MT
        <dbl> <chr>                 <dbl> <chr>      <dbl>    <dbl>
1           2 East South Central        1 Alabama     2012  734353.
2           2 East South Central        1 Alabama     2013 1101529.
3           2 East South Central        1 Alabama     2014 1151062.
4           2 East South Central        1 Alabama     2015  914829.
5           2 East South Central        1 Alabama     2016  960171.
6           2 East South Central        1 Alabama     2017  996876.

Now explore regions names with levels()

Code
levels(as.factor(mf.usa$DIVISION_NAME))
[1] "East North Central" "East South Central" "Middle Atlantic"   
[4] "Mountain"           "New England"        "Pacific"           
[7] "South Atlantic"     "West North Central" "West South Central"

Rename

The rename() function can be used to rename variables. We will rename STAT_ID to SATE_FIPS.

rename_with(.data, … .cols = …)

Code
df.usa <- mf.usa %>% 
        dplyr::rename("STATE_FIPS" = "STATE_ID")
names(df.usa)
[1] "DIVISION_ID"   "DIVISION_NAME" "STATE_FIPS"    "STATE_NAME"   
[5] "YEAR"          "MT"           

Pipe Join, Relocate and Rename functions

We can also all together inner_join(), relocate(), and rename() in a single line with pipe:

Code
df.corn = dplyr::inner_join(corn, state) %>% 
          dplyr::inner_join(div) %>%
          dplyr::relocate(DIVISION_ID, DIVISION_NAME, STATE_ID,   STATE_NAME, YEAR, MT,  
                    .after =  DIVISION_ID) %>%
          dplyr::rename("STATE_FIPS" = "STATE_ID") %>%
        glimpse()
Rows: 465
Columns: 6
$ DIVISION_ID   <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4,…
$ DIVISION_NAME <chr> "East South Central", "East South Central", "East South …
$ STATE_FIPS    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4,…
$ STATE_NAME    <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "…
$ YEAR          <dbl> 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 20…
$ MT            <dbl> 734352.8, 1101529.2, 1151061.8, 914829.3, 960170.7, 9968…

Select

dplyr::select() is used to extract a subset of columns from a data frame. It selects specific columns by name or by position. It is part of the dplyr package, which provides a set of functions that perform common data manipulation tasks efficiently and effectively.

select(.data, …)

Now we will use select() to create a dataframe with state names, year and production

Code
df.state <- df.corn %>% 
           dplyr::select(STATE_NAME, YEAR,  MT,) %>%
           glimpse()
Rows: 465
Columns: 3
$ STATE_NAME <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Ala…
$ YEAR       <dbl> 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,…
$ MT         <dbl> 734352.8, 1101529.2, 1151061.8, 914829.3, 960170.7, 996875.…

Filter

The filter() function in dplyr is used to subset a data frame based on some condition(s) specified in the filter argument. The syntax for using filter is:

filter(df, condition1, condition2, …)

We will use filter() to extract data only for northeast regions (single criteria) from us.df. This code will return a filtered data frame containing only the rows where the DIVISION_NAME column is equal to “East North Central”.

Code
df.01<-df.corn %>% 
              dplyr::filter(DIVISION_NAME == "East North Central")
levels(as.factor(df.01$STATE_NAME))
[1] "Illinois"  "Indiana"   "Michigan"  "Ohio"      "Wisconsin"

Filtering by multiple criteria within a single logical expression - select data from East North Central, South Central and Middle Atlantic Division

Code
df.02<- df.corn %>% 
            dplyr::filter(DIVISION_NAME %in%c("East North Central","East South Central", "Middle Atlantic")) 
levels(as.factor(df.02$STATE_NAME))
 [1] "Alabama"      "Illinois"     "Indiana"      "Kentucky"     "Michigan"    
 [6] "Mississippi"  "New Jersey"   "New York"     "Ohio"         "Pennsylvania"
[11] "Tennessee"    "Wisconsin"   

or we can use | which represents OR in the logical condition, any of the two conditions.

Code
df.03<- df.usa %>% 
                    dplyr::filter(DIVISION_NAME == "East North Central" | DIVISION_NAME == "Middle Atlantic")
levels(as.factor(df.03$STATE_NAME))
[1] "Illinois"     "Indiana"      "Michigan"     "New Jersey"   "New York"    
[6] "Ohio"         "Pennsylvania" "Wisconsin"   

Following filter create a files for the Middle Atlantic Division only with New York state.

Code
df.ny<-df.corn %>% 
         dplyr::filter(DIVISION_NAME == "Middle Atlantic" & STATE_NAME == "New York")
head(df.ny)
# A tibble: 6 × 6
  DIVISION_ID DIVISION_NAME   STATE_FIPS STATE_NAME  YEAR       MT
        <dbl> <chr>                <dbl> <chr>      <dbl>    <dbl>
1           3 Middle Atlantic         36 New York    2012 2314570.
2           3 Middle Atlantic         36 New York    2013 2401189.
3           3 Middle Atlantic         36 New York    2014 2556391 
4           3 Middle Atlantic         36 New York    2015 2143111.
5           3 Middle Atlantic         36 New York    2016 1867761.
6           3 Middle Atlantic         36 New York    2017 1983464.

Following filters will select State where corn production (MT) is greater than the global average of production

Code
mean.prod <- df.corn %>% 
              dplyr::filter(MT > mean(MT, na.rm = TRUE))
levels(as.factor(mean.prod$STATE_NAME))
 [1] "Illinois"     "Indiana"      "Iowa"         "Kansas"       "Michigan"    
 [6] "Minnesota"    "Missouri"     "Nebraska"     "North Dakota" "Ohio"        
[11] "South Dakota" "Wisconsin"   

We use will & in the following filters to select states or rows where MT is greater than the global average of for the year 2017

Code
mean.prod.2017 <- df.corn %>% 
              dplyr::filter(MT > mean(MT, na.rm = TRUE) & YEAR ==2017)
levels(as.factor(mean.prod.2017$STATE_NAME))
 [1] "Illinois"     "Indiana"      "Iowa"         "Kansas"       "Minnesota"   
 [6] "Missouri"     "Nebraska"     "North Dakota" "Ohio"         "South Dakota"
[11] "Wisconsin"   

Following command will select counties starting with “A”. filter() with grepl() is used to search for pattern matching.

Code
state.a <- df.corn %>% 
          dplyr::filter(grepl("^A", STATE_NAME))
levels(as.factor(state.a $STATE_NAME))
[1] "Alabama"  "Arizona"  "Arkansas"

Summarize

Summarize is a function in the dplyr used to collapse multiple values in a data frame into a single summary value. The function takes a data frame as input and returns a smaller data frame with summary statistics, such as mean, sum, count, etc. It can be used with other dplyr functions to manipulate and analyze data.

summarise(.data, …, .groups = NULL)

  • Center: mean(), median()

  • Spread: sd(), IQR(), mad()

  • Range: min(), max(), quantile()

  • Position: first(), last(), nth(),

  • Count: n(), n_distinct()

  • Logical: any(), all()

summarise() and summarize() are synonyms.

Code
# mean
summarize(df.corn, Mean=mean(MT))
# A tibble: 1 × 1
      Mean
     <dbl>
1 8360402.
Code
# median
summarise(df.corn, Median=median(MT))
# A tibble: 1 × 1
    Median
     <dbl>
1 2072749.

The scoped variants (_if, _at, _all) of summarise() make it easy to apply the same transformation to multiple variables. There are three variants.

  • summarise_at() affects variables selected with a character vector or vars()

  • summarise_all() affects every variable

  • summarise_if() affects variables selected with a predicate function

Following summarise_at() function mean of SOC from USA soil data (soil).

Code
soil %>%
    dplyr::summarise_at("SOC", mean, na.rm = TRUE)
# A tibble: 1 × 1
    SOC
  <dbl>
1  6.35

For multiple variables:

Code
soil %>%
    dplyr::summarise_at(c("SOC", "NDVI"), mean, na.rm = TRUE)
# A tibble: 1 × 2
    SOC  NDVI
  <dbl> <dbl>
1  6.35 0.437

The summarise_if() variants apply a predicate function (a function that returns TRUE or FALSE) to determine the relevant subset of columns.

Here we apply mean() to the numeric columns:

Code
soil %>%
    dplyr::summarise_if(is.numeric, mean, na.rm = TRUE)
# A tibble: 1 × 15
     ID   FIPS STATE_ID Longi…¹ Latit…²   SOC   DEM Aspect Slope     TPI KFactor
  <dbl>  <dbl>    <dbl>   <dbl>   <dbl> <dbl> <dbl>  <dbl> <dbl>   <dbl>   <dbl>
1  238. 29151.     29.1   -104.    38.9  6.35 1632.   165.  4.84 0.00937   0.256
# … with 4 more variables: MAP <dbl>, MAT <dbl>, NDVI <dbl>, SiltClay <dbl>,
#   and abbreviated variable names ¹​Longitude, ²​Latitude
Code
soil %>%
   dplyr::summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE)))
# A tibble: 1 × 15
     ID   FIPS STATE_ID Longi…¹ Latit…²   SOC   DEM Aspect Slope     TPI KFactor
  <dbl>  <dbl>    <dbl>   <dbl>   <dbl> <dbl> <dbl>  <dbl> <dbl>   <dbl>   <dbl>
1  238. 29151.     29.1   -104.    38.9  6.35 1632.   165.  4.84 0.00937   0.256
# … with 4 more variables: MAP <dbl>, MAT <dbl>, NDVI <dbl>, SiltClay <dbl>,
#   and abbreviated variable names ¹​Longitude, ²​Latitude

It is better to select first our target numerical columns and then apply summarise_all():

Code
soil %>%
    # First select  numerical columns
    dplyr::select(SOC, DEM, NDVI, MAP, MAT) %>%
    # get mean of all these variables
    dplyr::summarise_all(mean, na.rm = TRUE)
# A tibble: 1 × 5
    SOC   DEM  NDVI   MAP   MAT
  <dbl> <dbl> <dbl> <dbl> <dbl>
1  6.35 1632. 0.437  501.  8.88

Mutate

*mutate() adds new columns to a data frame based on existing columns or variables. The new columns are specified by expressions that use the values from one or more existing columns. The function returns a new data frame with the added columns and the same number of rows as the original data frame.

mutate(.data, …, .dots = NULL)

In this exercise we will create a new column (MT_1000) in df.corn dataframe dividing MT column by 1000

Code
df.corn %>%
    # get mean of all these variables
    dplyr::mutate(MT_1000 = MT / 10000) %>%
    glimpse()
Rows: 465
Columns: 7
$ DIVISION_ID   <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4,…
$ DIVISION_NAME <chr> "East South Central", "East South Central", "East South …
$ STATE_FIPS    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4,…
$ STATE_NAME    <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "…
$ YEAR          <dbl> 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 20…
$ MT            <dbl> 734352.8, 1101529.2, 1151061.8, 914829.3, 960170.7, 9968…
$ MT_1000       <dbl> 73.43528, 110.15292, 115.10618, 91.48293, 96.01707, 99.6…

Group by

group_by() allows you to group a data frame by one or multiple variables. After grouping, you can perform operations on the grouped data, such as aggregating with summarize(), transforming with mutate(), or filtering with filter(). The result of grouping is a grouped tibble, which is a data structure that retains the grouping structure and allows you to perform further operations on the grouped data.

group_by(.data, …, )

We can calculate global mean of USA corn production by division:

Code
df.corn %>% 
          dplyr::group_by(DIVISION_NAME) %>%
          dplyr::summarize(Prod_MT = mean(MT)) 
# A tibble: 9 × 2
  DIVISION_NAME        Prod_MT
  <chr>                  <dbl>
1 East North Central 22246702.
2 East South Central  3143670.
3 Middle Atlantic     2036263.
4 Mountain             712629.
5 New England           15203.
6 Pacific              384083.
7 South Atlantic      1163065.
8 West North Central 27893388.
9 West South Central  3163740.

We can also apply the group_by(), summarize() and mutate() functions with pipe to calculate mean of corn production in 1000 MT by division for the year 2022

Code
df.corn %>% 
          dplyr::filter(YEAR==2020) %>%
          dplyr::group_by(DIVISION_NAME) %>%
          dplyr::summarize(Prod_MT = mean(MT)) %>%
          dplyr::mutate(Prod_1000_MT = Prod_MT / 1000) 
# A tibble: 8 × 3
  DIVISION_NAME        Prod_MT Prod_1000_MT
  <chr>                  <dbl>        <dbl>
1 East North Central 22746952.       22747.
2 East South Central  3350119.        3350.
3 Middle Atlantic     1929554.        1930.
4 Mountain             651221.         651.
5 Pacific              391731.         392.
6 South Atlantic      1223075.        1223.
7 West North Central 28281091.       28281.
8 West South Central  3009964.        3010.

We can also apply the group_by() and summarize() functions to calculate statistic of multiple variable:

Code
soil %>% 
  group_by(STATE) %>%
  summarize(SOC = mean(SOC),
            NDVI = mean(NDVI),
            MAP = mean(MAP),
            MAT = mean(MAT))
# A tibble: 4 × 5
  STATE        SOC  NDVI   MAP   MAT
  <chr>      <dbl> <dbl> <dbl> <dbl>
1 Colorado    7.29 0.482  473.  6.93
2 Kansas      7.43 0.570  742. 12.6 
3 New Mexico  3.51 0.301  388. 11.6 
4 Wyoming     6.90 0.390  419.  5.27

Following code will idenfify State where corn production data has not reported for the all years.

Code
df.corn %>% 
  dplyr::group_by(STATE_NAME) %>% 
  dplyr::summarise(n = n()) %>%
  dplyr::filter(n < 11) 
# A tibble: 7 × 2
  STATE_NAME        n
  <chr>         <int>
1 Connecticut       2
2 Maine             2
3 Massachusetts     2
4 Nevada            2
5 New Hampshire     2
6 Rhode Island      2
7 Vermont           2
Code
# Get the state names

Pivoting Data-frame

Pivoting a data frame in R involves transforming columns into rows and vice versa. In R, there are multiple ways to pivot a data frame, but the most common methods are:

tidyr::pivot_wider: The pivot_wider() function is used to reshape a data frame from a long format to a wide format, in which each row becomes a variable, and each column is an observation.

tidyr::pivot_longer: This is a relatively new function in the tidyr library that makes it easy to pivot a data frame from wide to long format. It is used to reshape a data frame from a wide format to a long format, in which each column becomes a variable, and each row is an observation.

tidyr::spread(): This function is also used to pivot data from long to wide format. It creates new columns from the values of one column, based on the values of another column.

tidy::gather() : This function is used to pivot data from wide to long format. It collects values of multiple columns into a single column, based on the values of another column.

pivot_wider

pivot_wider() convert a dataset wider by increasing the number of columns and decreasing the number of rows.

Code
corn.wider = df.corn  %>% 
           dplyr::select (STATE_FIPS,STATE_NAME, YEAR, MT) %>%
           # Drop state where reporting years less than 11 
           dplyr::filter(STATE_NAME!= 'Connecticut', 
                        STATE_NAME!= 'Maine',                        
                        STATE_NAME!= 'Massachusetts', 
                        STATE_NAME!= 'Nevada',
                        STATE_NAME!= 'New Hampshire', 
                        STATE_NAME!= 'Rhode Island', 
                        STATE_NAME!= 'Vermont') %>%
           tidyr::pivot_wider(names_from = YEAR, values_from = MT) %>%
           glimpse()
Rows: 41
Columns: 13
$ STATE_FIPS <dbl> 1, 4, 5, 6, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, …
$ STATE_NAME <chr> "Alabama", "Arizona", "Arkansas", "California", "Colorado",…
$ `2012`     <dbl> 734352.8, 158504.4, 3142399.9, 823003.5, 3412162.2, 610394.…
$ `2013`     <dbl> 1101529.2, 229297.9, 4110445.0, 873298.1, 3261024.2, 733692…
$ `2014`     <dbl> 1151061.8, 149359.9, 2517526.9, 398166.0, 3745681.8, 853485…
$ `2015`     <dbl> 914829.3, 192034.1, 2045951.0, 239280.6, 3426640.9, 799837.…
$ `2016`     <dbl> 960170.7, 273064.4, 3236003.9, 469924.8, 4071581.0, 708189.…
$ `2017`     <dbl> 996875.6, 158504.4, 2765825.0, 339361.9, 4722109.3, 820946.…
$ `2018`     <dbl> 970839.3, 111765.9, 2965479.6, 285638.1, 3929587.5, 611410.…
$ `2019`     <dbl> 1138869.1, 217105.3, 3267247.5, 256045.5, 4061674.5, 736130…
$ `2020`     <dbl> 1284291.8, 148801.1, 2827677.3, 285003.1, 3123348.9, 715301…
$ `2021`     <dbl> 1407742.3, 82757.6, 3879292.8, 238772.6, 3768289.0, 803901.…
$ `2022`     <dbl> 869233.9, 223531.8, 3054130.3, 89920.8, 3012091.0, 721144.1…
pivot_longer

The pivot_longer() function can be used to pivot a data frame from a wide format to a long format.

Code
names(corn.wider)
 [1] "STATE_FIPS" "STATE_NAME" "2012"       "2013"       "2014"      
 [6] "2015"       "2016"       "2017"       "2018"       "2019"      
[11] "2020"       "2021"       "2022"      
Code
corn.longer<- corn.wider %>% 
               tidyr::pivot_longer(cols= c("2012", "2013", "2014", "2015", "2016", "2017",                                              "2018", "2019", "2020", "2021",  "2022"),
                          names_to = "YEAR", # column need to be wider
                          values_to = "MT") # data
head(corn.longer)
# A tibble: 6 × 4
  STATE_FIPS STATE_NAME YEAR        MT
       <dbl> <chr>      <chr>    <dbl>
1          1 Alabama    2012   734353.
2          1 Alabama    2013  1101529.
3          1 Alabama    2014  1151062.
4          1 Alabama    2015   914829.
5          1 Alabama    2016   960171.
6          1 Alabama    2017   996876.

Following command combined select(), rename(), summarize() and pivot_longer() the data:

Code
soil %>% 
  # First select  numerical columns
  dplyr::select(SOC, DEM, NDVI, MAP, MAT) %>%
  # get summary statistics
  dplyr::summarise_all(funs(min = min, 
                      q25 = quantile(., 0.25), 
                      median = median, 
                      q75 = quantile(., 0.75), 
                      max = max,
                      mean = mean, 
                      sd = sd)) %>% 
  # create a nice looking table
   tidyr::pivot_longer(everything(), names_sep = "_", names_to = c( "variable", ".value")) 
# A tibble: 5 × 8
  variable     min      q25   median      q75      max     mean      sd
  <chr>      <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>   <dbl>
1 SOC        0.408    2.77     4.97     8.71    30.5      6.35    5.05 
2 DEM      259.    1175.    1593.    2238.    3618.    1632.    770.   
3 NDVI       0.142    0.308    0.417    0.557    0.797    0.437   0.162
4 MAP      194.     354.     434.     591.    1128.     501.    207.   
5 MAT       -0.591    5.87     9.17    12.4     16.9      8.88    4.10 
Spread

dplyr::spread() is equivalent to tidyr::pivot_wider():

Code
df.corn %>% 
  dplyr::select (STATE_FIPS, YEAR, STATE_NAME, MT) %>%
  tidyr::spread(YEAR, MT) 
# A tibble: 48 × 13
   STATE…¹ STATE…² `2012`  `2013`  `2014`  `2015`  `2016` `2017`  `2018`  `2019`
     <dbl> <chr>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>  <dbl>   <dbl>   <dbl>
 1       1 Alabama 7.34e5  1.10e6  1.15e6  9.15e5  9.60e5 9.97e5  9.71e5  1.14e6
 2       4 Arizona 1.59e5  2.29e5  1.49e5  1.92e5  2.73e5 1.59e5  1.12e5  2.17e5
 3       5 Arkans… 3.14e6  4.11e6  2.52e6  2.05e6  3.24e6 2.77e6  2.97e6  3.27e6
 4       6 Califo… 8.23e5  8.73e5  3.98e5  2.39e5  4.70e5 3.39e5  2.86e5  2.56e5
 5       8 Colora… 3.41e6  3.26e6  3.75e6  3.43e6  4.07e6 4.72e6  3.93e6  4.06e6
 6       9 Connec… 2.05e4 NA      NA      NA      NA      2.32e4 NA      NA     
 7      10 Delawa… 6.10e5  7.34e5  8.53e5  8.00e5  7.08e5 8.21e5  6.11e5  7.36e5
 8      12 Florida 1.17e5  2.64e5  1.37e5  1.79e5  1.47e5 1.51e5  2.47e5  2.21e5
 9      13 Georgia 1.42e6  2.07e6  1.34e6  1.24e6  1.43e6 1.10e6  1.27e6  1.42e6
10      16 Idaho   6.69e5  5.29e5  4.06e5  3.68e5  4.78e5 5.93e5  6.76e5  7.81e5
# … with 38 more rows, 3 more variables: `2020` <dbl>, `2021` <dbl>,
#   `2022` <dbl>, and abbreviated variable names ¹​STATE_FIPS, ²​STATE_NAME
Gather

tidyr::gather(“key”, “value”, x, y, z) is equivalent to tidyr::pivot_longer()

Code
corr.gathered<-corn.wider %>%
        tidyr::gather(key = YEAR, value = MT, -STATE_FIPS, -STATE_NAME) %>%
        glimpse()
Rows: 451
Columns: 4
$ STATE_FIPS <dbl> 1, 4, 5, 6, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, …
$ STATE_NAME <chr> "Alabama", "Arizona", "Arkansas", "California", "Colorado",…
$ YEAR       <chr> "2012", "2012", "2012", "2012", "2012", "2012", "2012", "20…
$ MT         <dbl> 734352.8, 158504.4, 3142399.9, 823003.5, 3412162.2, 610394.…

Cleaning a messy data

In this exercise you will learn how a clean data and make it ready for analysis, such as dealing with missing values, data with below detection limit and cleaning spatial characters. We will clean usa_geochemical_raw.csv data for further analysis. The data could be found here

Code
## Create a data folder
dataFolder<-"E:/Dropbox/GitHub/Data/USA/"
df.geo<-read_csv(paste0(dataFolder,"usa_geochemical_raw.csv"))
meta.geo<-read_csv(paste0(dataFolder,"usa_geochemical_meta_data.csv"))
Code
glimpse(df.geo)
Rows: 4,857
Columns: 56
$ A_LabID    <chr> "C-328943", "C-328929", "C-328930", "C-329034", "C-328968",…
$ SiteID     <dbl> 96, 208, 288, 656, 912, 1232, 1312, 1488, 1680, 1824, 2144,…
$ StateID    <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL",…
$ Latitude   <dbl> 31.3146, 33.8523, 31.2179, 33.0992, 34.5501, 34.3577, 31.06…
$ Longitude  <dbl> -87.1166, -86.9041, -85.8788, -86.9976, -87.6779, -87.3130,…
$ CollDate   <chr> "2/18/2009", "2/26/2009", "2/18/2009", "2/23/2009", "2/25/2…
$ LandCover1 <chr> "Planted/Cultivated", "Developed", "Planted/Cultivated", "F…
$ LandCover2 <chr> "Pasture/Hay", "Low Intensity Residential", "Fallow", "Ever…
$ A_Depth    <chr> "0-20", "0-20", "0-20", "0-20", "0-5", "0-10", "0-25", "0-3…
$ A_Ag       <chr> "<1", "<1", "<1", "<1", "<1", "<1", "<1", "<1", "<1", "<1",…
$ A_Al       <chr> "0.87", "1.15", "1.05", "4.17", "1.51", "2.78", "2.14", "1.…
$ A_As       <chr> "1.6", "1.5", "1.2", "3.7", "2.7", "4.3", "2.7", "3.7", "2.…
$ A_Ba       <chr> "49", "118", "34", "316", "179", "160", "50", "185", "77", …
$ A_Be       <chr> "0.2", "0.4", "0.2", "1.1", "0.6", "0.5", "0.3", "0.5", "0.…
$ A_Bi       <chr> "0.08", "0.1", "0.07", "0.16", "0.09", "0.19", "0.16", "0.2…
$ A_C_Tot    <chr> "0.71", "0.88", "0.65", "1.14", "1.36", "1.71", "0.89", "4.…
$ A_C_Inorg  <chr> "N.D.", "N.D.", "N.D.", "N.D.", "N.D.", "N.D.", "N.D.", "N.…
$ A_C_Org    <chr> "0.71", "0.88", "0.65", "1.14", "1.36", "1.71", "0.89", "4.…
$ A_Ca       <chr> "0.07", "0.02", "0.05", "0.05", "0.03", "0.02", "0.04", "0.…
$ A_Cd       <chr> "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "0.…
$ A_Ce       <chr> "25.2", "27.8", "42.2", "41.7", "61.7", "32.6", "48.6", "44…
$ A_Co       <chr> "1.2", "2.4", "1", "7", "6.1", "3.5", "1.5", "3.9", "1.3", …
$ A_Cr       <chr> "11", "14", "8", "28", "17", "30", "17", "22", "22", "10", …
$ A_Cs       <chr> "<5", "<5", "<5", "<5", "<5", "<5", "<5", "<5", "<5", "<5",…
$ A_Cu       <chr> "4.4", "6.1", "10.9", "13.8", "5.2", "8.4", "15.1", "10.1",…
$ A_Fe       <chr> "0.57", "0.54", "0.38", "2.38", "1.06", "1.66", "0.9", "1.1…
$ A_Ga       <chr> "1.96", "2.24", "1.98", "9.53", "3.29", "6.43", "4.22", "4.…
$ A_Hg       <chr> "0.01", "0.02", "<0.01", "0.03", "0.03", "0.05", "0.02", "0…
$ A_In       <chr> "<0.02", "<0.02", "<0.02", "0.03", "<0.02", "0.02", "<0.02"…
$ A_K        <chr> "0.09", "0.25", "0.05", "0.89", "0.44", "0.46", "0.1", "0.3…
$ A_La       <chr> "11.4", "13.8", "23.4", "20.6", "21", "16.3", "22.3", "20.9…
$ A_Li       <chr> "5", "8", "5", "21", "6", "17", "9", "18", "8", "4", "7", "…
$ A_Mg       <chr> "0.03", "0.05", "0.03", "0.16", "0.06", "0.11", "0.04", "0.…
$ A_Mn       <chr> "81", "191", "249", "228", "321", "96", "155", "598", "76",…
$ A_Mo       <chr> "0.34", "0.36", "0.41", "1.19", "0.48", "0.66", "0.76", "0.…
$ A_Na       <chr> "<0.01", "0.02", "<0.01", "0.06", "0.06", "0.05", "<0.01", …
$ A_Nb       <chr> "5.2", "3.5", "3.4", "8.4", "0.6", "9.1", "7.1", "6.1", "2.…
$ A_Ni       <chr> "3.2", "4.6", "4.2", "11.5", "6.9", "8.4", "7.7", "7", "3.8…
$ A_P        <chr> "260", "170", "510", "200", "200", "190", "680", "440", "10…
$ A_Pb       <chr> "6.8", "11.6", "7", "14", "14.5", "15.4", "10.5", "26.6", "…
$ A_Rb       <chr> "8.4", "20", "5.7", "57.8", "24.6", "31.8", "9", "24.7", "1…
$ A_S        <chr> "<0.01", "<0.01", "<0.01", "0.01", "0.01", "0.01", "<0.01",…
$ A_Sb       <chr> "0.19", "0.23", "0.19", "0.62", "0.1", "0.46", "0.3", "0.4"…
$ A_Sc       <chr> "1.6", "1.6", "1.4", "7.5", "2.2", "4.1", "3.1", "2.5", "3.…
$ A_Se       <chr> "<0.2", "<0.2", "<0.2", "0.5", "<0.2", "0.4", "0.2", "0.4",…
$ A_Sn       <chr> "0.5", "0.5", "0.6", "1.3", "0.4", "1", "1.1", "1.3", "1", …
$ A_Sr       <chr> "6.2", "15.2", "3.9", "30.4", "21.9", "27.2", "6.7", "27.9"…
$ A_Te       <chr> "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0…
$ A_Th       <chr> "4.4", "3.2", "3", "8.2", "5", "7.1", "7.2", "5.9", "9.2", …
$ A_Ti       <chr> "0.24", "0.13", "0.13", "0.31", "0.05", "0.28", "0.3", "0.1…
$ A_Tl       <chr> "<0.1", "0.2", "<0.1", "0.5", "0.3", "0.4", "0.1", "0.3", "…
$ A_U        <chr> "1.4", "1.1", "1", "2.4", "1.4", "2.2", "2", "1.9", "1.9", …
$ A_V        <chr> "14", "16", "12", "56", "21", "37", "27", "30", "26", "22",…
$ A_W        <chr> "0.3", "0.3", "0.4", "0.8", "<0.1", "0.7", "0.6", "0.4", "<…
$ A_Y        <chr> "3.8", "4.9", "16.3", "8.8", "8.4", "6.7", "9.1", "9.4", "5…
$ A_Zn       <chr> "15", "17", "19", "32", "32", "28", "26", "48", "20", "34",…
Code
glimpse(meta.geo)
Rows: 54
Columns: 3
$ FIELS_ID    <chr> "Lab_ID", "SiteID", "StateID", "CollDate", "LandCover1", "…
$ Description <chr> "unique identifier assigned by the analytical laboratories…
$ Unit        <chr> NA, NA, NA, NA, NA, NA, "cm", "mg/kg", "wt. %", "mg/kg", "…

We first create a file with limited number of variables using select functions and rename them:

Code
mf.geo <- df.geo %>%
      select(A_LabID, StateID,  LandCover1, A_Depth, A_C_Tot, A_C_Inorg, A_C_Org, A_As, A_Cd,  A_Pb, A_Cr) %>%
      rename("LAB_ID"=A_LabID,
             "LandCover" =LandCover1,
             "Soil_depth" = A_Depth,
             "Total_Carbon" = A_C_Tot,
             "Inorg_Carbon" = A_C_Inorg,
             "Organic_Carbon"= A_C_Org, 
             "Arsenic" = A_As,
             "Cadmium" = A_Cd,
             "Lead" = A_Pb,
             "Chromium" = A_Cr) %>% glimpse()
Rows: 4,857
Columns: 11
$ LAB_ID         <chr> "C-328943", "C-328929", "C-328930", "C-329034", "C-3289…
$ StateID        <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "…
$ LandCover      <chr> "Planted/Cultivated", "Developed", "Planted/Cultivated"…
$ Soil_depth     <chr> "0-20", "0-20", "0-20", "0-20", "0-5", "0-10", "0-25", …
$ Total_Carbon   <chr> "0.71", "0.88", "0.65", "1.14", "1.36", "1.71", "0.89",…
$ Inorg_Carbon   <chr> "N.D.", "N.D.", "N.D.", "N.D.", "N.D.", "N.D.", "N.D.",…
$ Organic_Carbon <chr> "0.71", "0.88", "0.65", "1.14", "1.36", "1.71", "0.89",…
$ Arsenic        <chr> "1.6", "1.5", "1.2", "3.7", "2.7", "4.3", "2.7", "3.7",…
$ Cadmium        <chr> "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1", "<0.1",…
$ Lead           <chr> "6.8", "11.6", "7", "14", "14.5", "15.4", "10.5", "26.6…
$ Chromium       <chr> "11", "14", "8", "28", "17", "30", "17", "22", "22", "1…

Now, we filter the data where records have N.S. values INS:

Code
mf.geo<- mf.geo %>% 
        filter(Soil_depth != "N.S." & Total_Carbon !="INS")

Then, we will convert all N.D. values to empty string:

Code
mf.geo[mf.geo=="N.D."]<- ""

Here detection limits of As, Cd, Pb and Cr are 0.6, 0.1, 0.5, and 1 mg/kg, respectively. We will replace the values below detection limits by half of detection limits of these heavy-metals. Before that we have to remove “<” and convert the all to .

Code
mf.geo <- mf.geo %>%
      mutate_at(c("Arsenic", "Cadmium", "Lead", "Chromium"), str_replace, "<", "") %>%
      mutate_at(c(5:11), as.numeric) %>% glimpse()
Warning: There were 2 warnings in `mutate()`.
The first warning was:
ℹ In argument: `Inorg_Carbon = .Primitive("as.double")(Inorg_Carbon)`.
Caused by warning:
! NAs introduced by coercion
ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
Rows: 4,809
Columns: 11
$ LAB_ID         <chr> "C-328943", "C-328929", "C-328930", "C-329034", "C-3289…
$ StateID        <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "…
$ LandCover      <chr> "Planted/Cultivated", "Developed", "Planted/Cultivated"…
$ Soil_depth     <chr> "0-20", "0-20", "0-20", "0-20", "0-5", "0-10", "0-25", …
$ Total_Carbon   <dbl> 0.71, 0.88, 0.65, 1.14, 1.36, 1.71, 0.89, 4.59, 2.32, 0…
$ Inorg_Carbon   <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ Organic_Carbon <dbl> 0.71, 0.88, 0.65, 1.14, 1.36, 1.71, 0.89, 4.59, 2.32, 0…
$ Arsenic        <dbl> 1.6, 1.5, 1.2, 3.7, 2.7, 4.3, 2.7, 3.7, 2.9, 3.0, 2.3, …
$ Cadmium        <dbl> 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, …
$ Lead           <dbl> 6.8, 11.6, 7.0, 14.0, 14.5, 15.4, 10.5, 26.6, 13.2, 12.…
$ Chromium       <dbl> 11, 14, 8, 28, 17, 30, 17, 22, 22, 10, 17, 10, 31, 11, …

Now replace values below detection limits:

Code
mf.geo["Arsenic"][mf.geo["Arsenic"] == 0.6] <- 0.3
mf.geo["Cadmium"][mf.geo["Cadmium"] == 0.1] <- 0.05
mf.geo["Lead"][mf.geo["Lead"] == 0.5] <- 0.25
mf.geo["Chromium"][mf.geo["Chromium"] == 1] <- 0.5

Now will check the missing values of the data:

Code
# counting unique, missing, and median values
Arsenic<- mf.geo %>% summarise(N = length(Arsenic),
                 na = sum(is.na(Arsenic)),
                 Min = min(Arsenic, na.rm = TRUE),
                 Max =max(Arsenic, na.rm = TRUE))

Cadmium<- mf.geo %>% summarise(N = length(Cadmium),
                 na = sum(is.na(Cadmium)),
                 Min = min(Cadmium, na.rm = TRUE),
                 Max =max(Cadmium, na.rm = TRUE))

Lead<- mf.geo %>% summarise(N = length(Lead),
                 na = sum(is.na(Lead)),
                 Min = min(Lead, na.rm = TRUE),
                 Max =max(Lead, na.rm = TRUE))

Chromium<- mf.geo %>% summarise(N = length(Chromium),
                 na = sum(is.na(Chromium)),
                 Min = min(Chromium, na.rm = TRUE),
                 Max =max(Chromium, na.rm = TRUE),
                 )

#bind the data
geo.sum<- bind_rows(Arsenic, Cadmium, Lead, Chromium)

#add.row.names
row.names(geo.sum) <- c("Arsenic", "Cadmium", "Lead", "Chromium")
Warning: Setting row names on a tibble is deprecated.
Code
head(geo.sum)
# A tibble: 4 × 4
      N    na   Min    Max
  <int> <int> <dbl>  <dbl>
1  4809     0  0.3  1110  
2  4809     0  0.05   46.6
3  4809     0  0.25 2200  
4  4809     0  0.5  3850  

One of the common method of replacing missing values is na.omit. The function na.omit() returns the object with listwise deletion of missing values and function create new dataset without missing data.

Code
newdata <- na.omit(mf.geo)
glimpse(newdata)
Rows: 1,167
Columns: 11
$ LAB_ID         <chr> "C-329044", "C-329030", "C-329081", "C-329079", "C-3289…
$ StateID        <chr> "AL", "AL", "AL", "AL", "AL", "AR", "AR", "AZ", "AZ", "…
$ LandCover      <chr> "Planted/Cultivated", "Developed", "Planted/Cultivated"…
$ Soil_depth     <chr> "0-20", "0-20", "0-15", "0-7", "0-20", "0-10", "0-5", "…
$ Total_Carbon   <dbl> 2.90, 4.78, 0.75, 1.69, 1.00, 1.00, 1.88, 0.31, 2.13, 0…
$ Inorg_Carbon   <dbl> 1.8, 3.7, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.9, 0.4, 0.1, …
$ Organic_Carbon <dbl> 1.1, 1.1, 0.7, 1.6, 0.8, 0.9, 1.8, 0.1, 1.2, 0.3, 0.8, …
$ Arsenic        <dbl> 5.9, 7.9, 5.6, 7.2, 2.9, 4.8, 1.9, 5.3, 4.5, 5.0, 4.0, …
$ Cadmium        <dbl> 0.20, 0.20, 0.05, 0.20, 0.05, 0.05, 0.05, 0.20, 0.20, 0…
$ Lead           <dbl> 20.9, 19.1, 12.9, 21.1, 14.1, 11.9, 8.7, 26.8, 14.7, 24…
$ Chromium       <dbl> 73, 68, 37, 42, 36, 31, 16, 36, 35, 28, 30, 25, 62, 21,…

This function delete all records with missing values. Now newdata have only 1,167 records, since Inorg_Carbon variable has 3,690 missing values which all are omitted.

We can impute missing values in several ways. The easiest way to impute missing values is by replacing the mean values of the variable. The following code replace missing of Arsenic, Cadmium, Lead and Chromium with their mean values.

Code
mf.geo.new<-mf.geo %>% mutate_at(vars(Arsenic, Cadmium, Lead, Chromium),~ifelse(is.na(.x), mean(.x, na.rm = TRUE), .x)) %>% glimpse()
Rows: 4,809
Columns: 11
$ LAB_ID         <chr> "C-328943", "C-328929", "C-328930", "C-329034", "C-3289…
$ StateID        <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "…
$ LandCover      <chr> "Planted/Cultivated", "Developed", "Planted/Cultivated"…
$ Soil_depth     <chr> "0-20", "0-20", "0-20", "0-20", "0-5", "0-10", "0-25", …
$ Total_Carbon   <dbl> 0.71, 0.88, 0.65, 1.14, 1.36, 1.71, 0.89, 4.59, 2.32, 0…
$ Inorg_Carbon   <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ Organic_Carbon <dbl> 0.71, 0.88, 0.65, 1.14, 1.36, 1.71, 0.89, 4.59, 2.32, 0…
$ Arsenic        <dbl> 1.6, 1.5, 1.2, 3.7, 2.7, 4.3, 2.7, 3.7, 2.9, 3.0, 2.3, …
$ Cadmium        <dbl> 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.20, 0.05, 0…
$ Lead           <dbl> 6.8, 11.6, 7.0, 14.0, 14.5, 15.4, 10.5, 26.6, 13.2, 12.…
$ Chromium       <dbl> 11, 14, 8, 28, 17, 30, 17, 22, 22, 10, 17, 10, 31, 11, …
Code
mf.geo.new %>%summarise(sum(is.na(Chromium)))
# A tibble: 1 × 1
  `sum(is.na(Chromium))`
                   <int>
1                      0
Code
# save clean data
#write_csv(mf.geo.new,"usa_geochemical_clean.csv" )

Exercise

  1. Create a folder in your computer name Homework.

  2. Create a R-Markdown Project on this Homework directory

  3. Create a R-Markdown documents (name homework_01.rmd) in this project directory and do all Tasks (1 to 23) using the data shown below.

  4. Submit all codes and output as a HTML document (homework_02.html) before class of next week.

Required R-Package

library(tidyverse)

Data

  1. bd_rice_production.csv: Yearly rice production of Bangladesh

  2. bd_district.csv: District names with DISTRICT_ID and DIVISION_PCODE

  3. bd_division.csv Division names and DIVISION_PCODE

  4. raj_soil_data.csv: SRDI soil data for Rajshahi Division

  5. bd_soil_data_raw.csv: SRDI soil data, not cleaned

Download all above data and save in your project directory. Use read_csv to load the data in your R-session. For example:

rice<-read_csv(“bd_rice_production.csv”))

Tasks

  1. Join rice production, and district file using dplyr::inner_join()

  2. Then join division file using dplyr::inner_join()

  3. Organize column as (DIVISION_ID, DIVISION_NAME, DISTRICT_ID, DISTRICT_NAME, YEAR, MT using dplyr::relocate()

  4. Rename “DISTRICT_ID” to “DISTRICT_PCODE” using dplyr::rename()

  5. Run all the above code using pipe function in a single line and create a data frame name df.rice.csv

  6. Form df.rice data that you have created before, use select() function to create a data frame only with DISTRICT_NAME, YEAR and MT

  7. Filter out the data from Rajshahi division using dplyr::filter()

  8. Filter (Filtering by multiple criteria) all district in Rajshahi and Dhaka divisions using dplyr::filter()

  9. Use | or OR in the logical condition in filter function, select data from any of the two divisions.

  10. Apply filter create a files for the Rajshai Division only with Bogra District.

  11. Select districts where rice production (MT) is greater than the global average

  12. Use & to select district where MT is greater than the global average of for the year 2018-2019

  13. Select districts starting with “P”

  14. Use raj_soil data to calculate mean of SOM using dplyr::summarise_at() function

  15. Use bd_soil data to calculate mean of SOM and NDVI using dplyr::summarise_at() function

  16. Use dplyr::summarise_if() to calculate mean() to the numeric columns

  17. Select numerical columns (pH,SOM, DEM, NDVI, NDFI) and then apply dplyr::summarise_all()*to calculate mean of these variables

  18. Create a new column (MT_1000) in df.rice dataframe dividing MT column by 1000 using mutate()

  19. Apply the group_by(), summarize()** and mutate() functions with pipe to calculate mean of corn production in 1000 MT by division for the year 2018-2019

  20. Use df.rice data to create a wider data frame using tidyr::pivot_wider() function

  21. Convert rice.wider data to a longer format use tidyr::pivot_longer()

  22. Clean bd_soil_data_raw.csv and save as bd_soil_data.final.csv. Follow the steps you have learned from “Cleaning a messy data” section.

Further Reading

  1. R for Data Science

  2. Data Wrangling with R

  3. Book: Data Wrangling with R

  4. PDF Data wrangling with R and RStudio

  5. Youtube Data Wrangling with R and the Tidyverse - Workshop